skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Xiong, Jinjun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 9, 2026
  2. Free, publicly-accessible full text available April 11, 2026
  3. Purpose:Complex scientific problems, including those facing the discipline of communication sciences and disorders (CSD), require interdisciplinary teams of scientists who bring diverse perspectives, knowledge, and skills. According to a recent survey, team science is not yet widely practiced by CSD researchers. This viewpoint describes a current interdisciplinary team science project that addresses a challenging problem for CSD practitioners: meeting the needs of young children with speech and language disabilities for screening and intervention using artificial intelligence–augmented technologies. Method:The article draws from the research literature on the science of team science to describe common challenges faced by interdisciplinary teams and recommended practices to resolve the challenges. Throughout, we provide examples from the National Artificial Intelligence Institute for Exceptional Education to illustrate team science challenges and how they can be addressed. Conclusions:Readers are encouraged to embrace interdisciplinary teamwork to advance the science of CSD. We recommend seeking out training in team science, advocating for professional development opportunities, and institutional support for team science to maximize its benefits for the field. 
    more » « less
    Free, publicly-accessible full text available April 10, 2026
  4. FPGA-based edge servers are used in many applications in smart cities, hospitals, retail, etc. Equipped with heterogeneous FPGA-based accelerator cards, the servers can be implemented with multiple tasks including efficient video prepossessing, machine learning algorithm acceleration, etc. These servers are required to implement inference during the daytime while re-training the model during the night to adapt to new environments, domains, or new users. During the re-training, conventionally, the incoming data are transmitted to the cloud, and then the updated machine learning models will be transferred back to the edge server. Such a process is inefficient and cannot protect users’ privacy, so it is desirable for the models to be directly trained on the edge servers. Deploying convolutional neural network (CNN) training on heterogeneous resource-constrained FPGAs is challenging since it needs to consider both the complex data dependency of the training process and the communication bottleneck among different FPGAs. Previous multi-accelerator training algorithms select optimal scheduling strategies for data parallelism, tensor parallelism, and pipeline parallelism. However, pipeline parallelism cannot deal with batch normalization (BN) which is an essential CNN operator, while purely applying data parallelism and tensor parallelism suffers from resource under-utilization and intensive communication costs. In this work, we propose MTrain, a novel multi-accelerator training scheduling strategy that transfers the training process into a multi-branch workflow, thus independent sub-operations of different branches are executed on different training accelerators in parallelism for better utilization and reduced communication overhead. Experimental results show that we can achieve efficient CNN training on heterogeneous FPGA-based edge servers with 1.07x-2.21x speedup under 15 GB/s peer-to-peer bandwidth compared to the state-of-the-art work. 
    more » « less
  5. Identifying effective interventions from the scientific literature is challenging due to the high volume of publications, specialized terminology, and inconsistent reporting formats, making manual curation laborious and prone to oversight. To address this challenge, this paper proposes a novel framework leveraging large language models (LLMs), which integrates a progressive ontology prompting (POP) algorithm with a dual-agent system, named LLM-Duo. On the one hand, the POP algorithm conducts a prioritized breadth-first search (BFS) across a predefined ontology, generating structured prompt templates and action sequences to guide the automatic annotation process. On the other hand, the LLM-Duo system features two specialized LLM agents, an explorer and an evaluator, working collaboratively and adversarially to continuously refine annotation quality. We showcase the real-world applicability of our framework through a case study focused on speech-language intervention discovery. Experimental results show that our approach surpasses advanced baselines, achieving more accurate and comprehensive annotations through a fully automated process. Our approach successfully identified 2,421 interventions from a corpus of 64,177 research articles in the speech-language pathology domain, culminating in the creation of a publicly accessible intervention knowledge base with great potential to benefit the speech-language pathology community. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026